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Discretization of the Navier-Stokes equation leads to the problem of solving (A4 - 
N(u))u = f, where M is positive definite symmetric and N(v) skew symmetric. Recent 
results in linear iterative methods have developed algorithms for the solution of (M - 
N)u = J: We apply the linear methods and a process of linearization to the Navier-Stokes 
equation on the computer. 

1. INTRODUCTION 

The solution of linear equations of the form 

(M- N)u=f (1.1) 

for A4 positive definite dymmetric and N skew symmetric, has been extensively 
studied (Concus and Golub [3], Widlund [l 11, Rapoport [8]). Iterative methods have 
been developed which require no storage of matrices; however, M, N, and M-l applied 
to a vector must be easily computable. These methods rely on the specialized positive 
definite symmetric and skew symmetric structure, and this structure plays a fundamen- 
tal role in the ensuing results. 

The stationary Navier-Stokes equation may be written in the form (Temam [9]) 

W - NW u =f, (1.2) 

where M is linear positive definitive symmetric and N(V) is linear skew symmetric for 
fixed v. Discretization of the Navier-Stokes equation leaves it in the form (1.2), and 
it is the solution of these equations which is reported in this research. Equations (1.2) 
are solved by a process of linearization 

CM - Nun)) un+l =J (1.3) 

To solve the discrete case we have used a recent development in the finite-element 
method, that of elements with a divergence-free basis (Thomasset [IO]). Of fundamen- 
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tal importance in the method is multiplication by M-l. This has been implemented 
by a Fourier-Toeplitz method (Fischer et al. [5]), and a capacitance matrix method 
(Proskurowski and Widlund [7]). 

2. NAVIER-STOKES EQUATION 

We consider the two-dimensional problem with homogeneous boundary conditions. 
Let D be a bounded domain in R2 and define 

w ,= wo1wo>2, 
V = {v E W: div v = O}. 

The problem may be stated in the weak form: Find u E V, p E L2(Q) such that for all 
WE w, 

(grad u, grad w) + 0.5R $, lQ [-& (upJ + uj --$I wi dx - (A div ~1 = (f, ~1. 

(2.1) 
R is the Reynolds number and (,) is the Lz inner product. The problem may be 
equivalently stated (Temam [9]): 
Find u E V such that for all v E V 

(grad u, grad v) $ 0.5R i 1 [& 
du. 

(UjUi) $ Uj z 
dxj 1 ui d,x 

i,)=l .Q ’ 3 

Equation (2.2) is in the weak form of Eq. (1.2) 

(M - N(u)) 4 v) = (f, 4. 

For u, v, w E V, the trilinear term 

(2.3) 

is skew, (N(u) v, v) = 0, as may easily be seen by integrating by parts to obtain 

(N(u)v, w) = % j [uj 2 wi - uj f$( ui] dx. 
i,j=l fl 

This yields an equation equivalent to (2.2), 

(grad u, grad v) + 0.5R I gI Jn [uj 2 vi - uj 2 ui] dx = (f, v). (2.4) 
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Equations (2.2) and (2.4) are in the form of (2.3), and may be solved by the linearized 
procedure 

w - w&J) &+I 7 4 = CL VI. (2.5) 

More generally, Crouzeix [4] analyzes 

for 

Mu) u, v) = (f, 4 (2.6) 

(A(v) u, 4 >, 01 II u li2. (2.7) 

The Navier-Stokes equation is the case that 

A(v) = M - N(v). 

The analysis of this method and its application to the Navier-Stokes equation are due 
to Crouzeix. Since this method is of central importance to our work, we discuss it, 
essentially following Crouzeix [4]. 

THEOREM 1. Let H be a Hilbert space, V C H having a countable base, V’ the dual 
of V with the dual norm jl (I*. Let A(v) E L( V, V’)for v E V be such that if v, is a sequence 
in V converging weakly to v then A(v,) v,, converges weakly to A(v) v in V’. Also assume 
that for u, v E V, (2.7) holds, and also 

II 44 - A(v)ll~(V,m < #II u II, /I v II) II u - v 1; , (2.8) 

(2.9 

where 01 > 0 and 4 : R+’ -+ R+ is nondecreasing in each variable. Then a unique 
solution to (2.6) exists and may be obtained by the iteration 

Ilo = 0, 

(Ah) u,+l, 4 = (f, VI. (2.10) 

Before the theorem is proved two lemmas need to be established. 

LEMMA 1. Let P be a continuous function from Rn into Rn such that for all 5, 
ItI =p, 

(pa 0 3 0. (2.11) 

Then there exists 5, 1 5 / < p, such that f is a root of P. 

Proof Assume the contrary, that P has no root in K = (5: 1 .$ / < p>. The map 
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t -+ --@(&/I P(& maps K into K continuously. By the Brouwer fixed-point theorem 
there exists a &, such that 

t, = -pmd/I P(cf”u>I . (2.12) 

Taking the Euclidean inner product of (2.12) with P([,,) we obtain 

a contradiction to (2.16). Q.E.D. 

LEMMA 2. Let A and q5 be as in (2.7) and (2.8). Then 

‘~ A-‘(u) - A-l(v)~i < __ dtii u II, II v II) 1; u - v;’ . 
a” 

Prooj 

11 A-l(u) - A-l(v)11 = ii A-l(u)[A(v) - A(u)] A-l(v)11 
i ;I A-l(u)11 Ii A-‘(v)11 I/ A(V) - A(u)11 . 

By applying (2.7) and (2.8) the lemma is proved. Q.E.D. 

Proof of Theorem I. First we will use Lemma 1 to prove existence. Let #r , & ,..., 
be an orthonormal base for V. Let V,, be the Hilbert space spanned by & , & ,..., +n 
with the inner product (x, Y)~,, = (x, Y)~ . Define P,(v) E V, for v E V by 

We have for v E V,, that 

(P,(v), v) 2 (a II v I1 - iifli”>l, v I’ * 

Hence for 11 v I/ = II~II*/LI = p, (2.11) holds. On V, , P, may be viewed as a continuous 
function from R” into R”. By Lemma 1, P,, has a root w, in V, . 

with /I w, !I ,( jifli*/~~. Every bounded sequence has a weakly convergent subsequence, 
also denoted by w, -+ u, with 
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Letting n --f co 

Mu) u, +i> = (f, dd 

Hence in the weak sense 

A(u) u =J 

Existence is now proved and we turn to the iterative procedure. Let u be a solution of 
(2.6). Define the sequence u, by u, = 0 and (2.10). Then by Lemma 2, the a priori 
bound 11 u/j I/ u, 11 < l/fll*/(l~, and assumption (2.9) 

l/u - un+1ll = !I A-W- ~-lhL)fll 

< I! u - u, II. 

The a priori estimate follows by letting v equal u and u,+~ in (2.6) and (2.10) respec- 
tively. A similar argument establishes uniqueness. Q.E.D. 

3. DISCRETE NAVIER-STOKES EQUATION 

We now examine methods for the numerical solution of the Navier-Stokes equation. 
It is natural to first consider a finite-difference approximation to (2.1) 

-Ahu + O.SRN,(u, u) + gradhp =f, 

~l&JZ~l + 4&i) + ~2al?P, + Qi&2~,) 

D"Aw2) + ~2&/~72 + QM/(U,~,) 1 ' 

div), u = 0. 

(3.1) 

A, is the five-point Laplacian, grad, and div!, are centered difference approximations 
to grad and div, and D,, and D,, are centered difference approximations to d/dx and 
d/dy. The positive definite symmetric and skew nonlinear form of the differential 
equations is preserved in the difference equations. Assuming homogeneous boundary 
conditions for w, 

Wdv, w), w) = 0 

for arbitrary v, and Nh(v, w) is iinear in each of v and w. 
The linearized equations corresponding to (3.1) are 

-bn+l + 0.5RNdu, , u,+d + grad P~+~ = .f, 

div,, u,+r = 0. 
(3.2) 
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Equations (3.2) are not of the form (1.1) due to the appearance of the pressure pnfl 
and the continuity equation div, u,+~ = 0. 

Two methods, (3.3) and (3.4), discussed by Crouzeix [4] and Temam [9], respectively, 
allow use of methods for the iterative solution of (1.1). 

-A h&+1 + O.~RWdu,, u,+~) f gra4 pn = .I; 

P~+~ = pn - P divh u%+~ . 
(3.3) 

-Alsulz+l + 0.5RNh(%+l , u,+d + grab, P,, = f; 

P%+~ = pn - P dh un+l . 

p is a small positive constant. Fortin et al. [6] report good computation results for a 
method close to (3.4), differing in the discretization of the nonlinear term. 

The major difficulty is solving the difference equation (3.1) or its linearized version 
(3.2) simultaneously with the continuity equation. The usual finite-element equations 
would give rise to the same problem. For this reason we have used finite elements 
that satisfy 

divh vh = div vh = 0. (3.5) 

Our reference for the construction of these elements is Thomasset [lo]. 
We will now describe these elements, in particular on the mesh illustrated in Fig. 1. 

Define the scalar shape function &,&, JJ) on a given triangle as a linear function 
ax + ~JI + c that takes the value 0 at the two nodes (midpoints of sides) other than A4 
and takes the value 1 at M; see Fig. 2. Define two types of elements, rotations vhs(& u) 
and translations vhM(x, JJ). A rotation v&x, JJ) has support on six adjacent triangles 
as in Fig. 3. On the triangle with vertices S, S’, and S” 

VI&-, V) = 
h&, Y> n’ + h~-(x, iv> n” 

I SS’ I j SS” ! ’ 

FIGURE 1 
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where n’, n” are unit normals in counterclockwise orientation at M’, M”, respectively. 
A translation vhM(x, y) has support on two adjacent triangles. An example is shown 
in Fig. 4. On either triangle 

VhMc-G v) = / igld %M(& u>. 

It follows from direct calculation that these functions are divergence free. 

M R 
FIGURE 2 

We have described these elements on a coarse mesh in the unit square, although 
they may also be used for other two-dimensional domains. Thomasset [lo] has shown 
that in a simply connected domain the divergence-free elements span the space of 2- 
vectors with linear entries having zero divergence. 

Defining V, to be the aforementioned space, we may write the discrete versions of 
(2.2) and (2.4) as 

du,i 
(grad “h 3 grad FL) + 0.5R i$l j. [-& (ui&zi) + uhi -1 c&i dx = (5 vh) 

(3.6) 

S’ 
FIGURE 3 



400 DAVID RAPOPORl 

(3.7) 
Equations (3.5) and (3.6) are not identical, as the elements vh are nonconforming 
(vh 4 (H,,1(Q))2). Equation (3.7) is of the form (2.3), positive definite symmetric plus 
skew nonlinear. The same is also true for Eq. (3.6), to within a small truncation error. 
These equations may be solved using the linearized method (2.5) and the linear 
iterative methods for (1. I). The discrete linearized equations are 

(grad uh y grad 4 f 0.~ ,gl j, [-$ 
du;+ 

(u~$4;*~1> + u;j ___ 
dx j I 

chi dx = (j; V,) 

and 
(3.8) 

FIGURE 4 

4. NUMERICAL RESULTS 

We attempt to solve a standard problem, the driven square cavity (Burgraff [I], 
Chorin [2], Fortin et al. [6], Thomasset [lo]). Q is the unit square, and the boundary 
conditions are 

u1 = -1, u2 == 0, O<x<I, Y = 1, 

u, = ug = 0, O<X,(l, y = 0, 
u, = U% = 0, O<y=l, x=Oandx== 1. 

To apply the linear methods to (3.6) and (3.7) the stiffness matrix for the linear term 
must be inverted. A direct method rather than an iterative method is preferred, using 
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as little storage as possible. For this reason we reject Cholesky decomposition and 
use a Fourier-Toeplitz method related to the work of Fisher et al. [5]. The first step is 
to invert the stiffness matrix on the unit square periodic in the x-direction. For each 
mesh point (i,j) we associate four elements ~~(i,j), p(i,j), y(i,j), and S&j) and a cor- 
responding vector of coefficients X(i,j) = (X,(i,j)}: , as in Fig. 5. Order the (i,j) 
lexicographically. The stiffness matrix represents difference equations periodic in the 
x-direction, which may be inverted using the fast Fourier transform. It is possible to 
show more generally that difference equations with constant coefficients may be 
inverted using the fast Fourier transform. Neglect for the moment the presence of 
boundaries at y = 0 and y = 1. Write the equations as 

A~,,~,X(i - 1,j - 1) + A,,-,X(1’,j - 1) + &-,X(1’ + 1,j - 1) 

+ L,,XG - Lj) + ~o,oXLi) + 4,0W + l,.i> 

+ LlX(1’ - 19-i + 1) + ~O,lWki + 1) 

+ 4,JG + l,.i + 1) = WA i,j=O ,..., N- 1. 

Al,, is a 4 x 4 matrix equal to 

- (~4 + 4 .i + ml, 4&j)) - (4 + L .i + ~1, B(i, 8) 
- (4 + 4-i + m), r(G)> - (4 + 1, j + ml, W,j)> 

- W -I- L.i + ~1, &i)> - @G + 6-i + m>, B(Q)> 
- (SG + hi + ~1, r&i>> - <BG + L.i + ~1, Wi)> 

--(Ai + Lj + m), &i)> - 64 + z,j + ml, B&i)> 
- <y(i + 4.i + m), y(Li)) - 64 + 6.i + 4, W,j)> 

-W + l,j + m), 4j)i - W + 6.i + m), PW)) 
- <SC + L j + 4, rKi)> - W + L j + ml, W, j)>, 

(., .) = (grad ., grad .)LS. 

Expand X and F in a discrete Fourier series in the x-direction. 

N-l 

X(U) = 1 eiwznihX(w,,j), 
0=0 

(4.2) 
N-l 

W,.i) = 1 eiwznihP(o, j). 

CJJ=O 

The discrete Fourier series is unique, and the inversion formula to (4.2) is 

x(w, j) = -& ‘i;’ e--iwZHihX(i, j). 

a=0 

581/35/3-8 
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ati, j) 

m B(i, j) 

(i, j) 

0 Y(i, j) 

(i, j) 

a7 S(i,j) 

(i, j) 

FIGURE 5 
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Now write the difference equations (4.1) as 

N-l 

,C, (A-l,-le-iW2nh + Ao,-1 $ Al,-leiw2nh) eiw2nihX(u,j - 1) 

N-l 
+ 1 (A-l,0+J2~~~ + Ao,o + Al,0eiw2nh) eico2nihX(co,j) 

N-l 
+ C (A-l,le-iw2nh + A,,, + Al,leiw2nh) eiw2nih;E(co,j + 1) 

OF0 

N-l 
= C eiw2nihE3(w, j), 

o,=o 
i, j = 0 ,..., N - 1. 

403 

(4.3) 

Define 

B(U) = A-l,-le-iW2nh + A,,-, + Al,-lei~2~h, 
M(W) = A-l,0e-iw2nh + A,,, + Al,0eiw2nh. 

Using the uniqueness of the discrete Fourier transform and the fact that Al,, = 
A%.-,, 7 (4.3) becomes 

B(w) X(w, j - 1) + M(o) rZ(t.0, j) + B*(w) J?(o, j + 1) q = I3(w, j), 
w,j=O ,...) N - 1. (4.4) 

These difference equations are linked only in the y-direction. Thus we have reduced 
(4.1) to a block-tridiagonal system of linear equations. The Dirichlet boundary con- 
ditions at y = 0 and y = 1 present only a programming detail. These equations were 
solved using complex block-Gaussian elimination. The storage requirements are 
16N2 complex words for the factorization. The pivotal elements are on the diagonal, 
and so no storage is needed for pivotal indices. For completeness we exhibit M(w) 
and B(w), 

M(w) = 

16 - 8 cos(27rwh) 4e-2&,h 1 _ e-2niwh _ 1 _ e2niwh 

de2niwh 16 -2 -2 - ze2niwh 
1 _ e2niaJ -2 4 0 

_ 1 
_ 

e-2niwll -2 2e-2ni”,lr 
_ 0 4 

-4 -e-2niwh 1 -+ e-2niwh 

0 
0 . 

00 0 0 I 

Now that the stiffness matrix representing the Laplacian in the unit square for the 
x-direction periodic is inverted, we may invert the stiffness matrix for the Dirichlet 



404 DAVID RAPOPORT 

problem by using the capacitance matrix method. The capitance matrix method 
(Proskirowski and Widlund [7]), is a tool from linear algebra for the simultaneous 
inversion of matrices which are equal in most of their entries, or which are embedded 
one in the other. We now give a precise description of the method in the latter case. 

Let A be an (n - p) x (H - p) invertible matrix and 

an (n x n) invertible matrix. For computational purposes it is desirable that p is 
much smaller than n and that the inverse of B times a vector is easily computed. 
B &a, 21 9 and B,, are p x (n - p), (n - p) x p, and p x p matrices, respectively. 
Define the p x p capacitance matrix C by 

To solve 

Au = v 

first the capacitance matrix is calculated and factored by Gaussian elimination. Then 

ii = (Opx(n--g&J B-l [;;1 

is computed and 

c/l=-ii 

is solved. The solution u is given by 

That the capacitance matrix is invertible and u is the solution are easily verified. 
Using the capacitance matrix method the Dirichlet problem may be solved using 

the Fourier method for the periodic problem. A is simply the stiffness matrix for the 
Dirichlet problem and B the stiffness matrix for the periodic problem. The additional 
equations of B are those corresponding to elements which no longer lie in the solution 
space. They are the a(i, 0) and 6(i, 0) (refer to Fig. 5). Since B is positive definite 
symmetric the capacitance matrix is positive definite symmetric. The storage require- 
ments for the code are O(N2); however, at the expense of increased computation times 
this figure could be reduced to O(N). 

The proposed numerical method was successful in solving (3.6) and (3.7). It was 
found computationally more efficient to solve the corresponding linearized equations 
(3.8) and (3.9) until the norm of the residual of Eqs. (3.8) and (3.9) was less than a 
given epsilon (e.g., E = 1O-3), rather than solving (3.8) and (3.9) to within machine 
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accuracy. The finest mesh on which a solution was calculated was for N = number of 
divisions along coordinate axes = 16. The mesh illustrated in Fig. 1 corresponds to 
N = 4. 

The solutions of (3.6) and (3.7) at R = 100 were virtually identical, and differed at 
R = 250. We present a plot of the solution of (3.6) at R = 100 in Fig. 6 and a graph 
of the velocity profile along the centerline x = 0.5 of the same in Fig. 7. These may be 
compared with similar data in the references mentioned at the beginning of this 
section for verification that the method is viable for small Reynolds numbers. To 
make the method successful at large Reynolds numbers an exceedingly fine mesh 

.I0 .20 .30 
I  

.40 50 .60 70 .80 .90 1.00 
VELOCITY 

FIGURE 6 
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FIGURE 7 

would have to be used, requiring additional software problems. It should also be 
mentioned that the method is adaptable to nonrectangular domains. In Table I we 
have included computation times for the illustrated run at the Courant Institute of 
Mathematical Sciences CDC 6600. 

TABLE I 

11 Residual II 
Reynolds CPU seconds Number of 
number execution time 11 Solution II linearizations 

__ ~-- __~___. 
loo 167 0.11 x IO-3 10 
100 239 0.26 x lo-’ 20 
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